隨著我國深入貫徹綠色發展理念,煤礦企業要保證能源可靠穩定供應和礦區生態文明建設,持續向現代化高水平階段發展,各項生產指標逐步符合綠色發展要求,整體技術水平向工藝先進、生產效率高、資源利用率高、可靠保障能力強、環境保護水平高、單位產品能耗低等方向邁進。
儲備能力得到動態調整,煤炭保供能力增強。為緩解用煤緊張態勢,加快先進產能釋放,國家有關部門積極推動煤礦擴產工作,保障煤炭正常供應,建成超過1億噸的政府可調度煤炭儲備能力。同時,加快露天煤礦辦理,先后批復60余座露天煤礦復產,涉及產能2.1億噸/年。
煤電效率持續提升。目前我國發電和供熱行業二氧化碳排放占國內二氧化碳總排放量的比重超過40%,是減排重點行業。實踐證明,提高燃煤發電效率可降低電力行業二氧化碳排放。
電力是消耗煤炭的主要行業之一,也是國家節能減排工作重點管控行業。“十一五”“十二五”“十三五”期間,電力行業按照相關部署,深入實施煤電節能減排改造升級,供電煤耗持續下降。2020年國內6000千瓦及以上火電廠供電煤耗為305.5克標準煤/千瓦時,比2015年下降9.9克/千瓦時,比2010年下降27.5克/千瓦時,比2005年下降64.5克/千瓦時。以2005年為基準年,2006-2020年,供電煤耗降低累計減少電力行業二氧化碳排放66.7億噸,貢獻率達36%。
集中高效利用可有效降低污染。隨著我國經濟發展水平不斷提升,煤炭在生活消費和商業領域應用的占比逐步降低,同時工業領域煤炭消費量占比逐步提高。工業領域集中應用既可以提高煤炭的使用效率,也可以顯著降低散燒煤帶來的污染。
一、概 述(WBZJ-6六杯油樣絕緣油耐壓強度測試儀設計精巧,結構簡單)
絕緣油介電強度測試儀是我公司科研技術人員,依據國家標準GB507-86及行標DL-474·4-92DL/T596-1996的有關規定,發揮自身優勢,經過多次現場試驗和長期不懈努力,精心研制開發的高準確度、全數字化工業儀器。該機操作簡便,造型美觀大方。由于采用了全自動數字化微機控制,所以測量精度高、抗干擾能力強、方便可靠。
二、特點(WBZJ-6六杯油樣絕緣油耐壓強度測試儀設計精巧,結構簡單)
1. 儀器采用大容量單片機控制,工作穩定可靠;
2. 儀器內設寬范圍看門狗電路杜絕了死機現象;
3. 多種操作選擇,儀器程序設有GB1986、GB2002兩種國家標準方法和自定義操作,能適應不同用戶的多種選擇;
4. 儀器油杯采用特種玻璃一次澆鑄成型,杜絕了漏油等干擾現象的發生;
5. 儀器獨特的高壓端采樣設計讓測試值直接進入A/D轉換器,避免了在模擬電路中造成的誤差,使測量結果更加準確;
6. 儀器內部具有過流、過壓、短路等保護等功能,并且具有極強的抗干擾能力,電磁兼容性好;
7. 便攜式結構,易于移動,戶內外使用均很方便。
三、技術指標(WBZJ-6六杯油樣絕緣油耐壓強度測試儀設計精巧,結構簡單)
1. 升壓器容量 1.5 kVA
2. 升壓速度 2.0 kV/s,2.5 kV/s,3.0 kV/s,3.5 kV/s 四檔任選
3. 輸出電壓 0~80 kV
4. 電源畸變率 <1%
5. 顯示方式 大屏幕液晶漢字顯示
6. 電極間隙 標準2.5 mm
7. 外形尺寸 760 mm×670 mm×770 mm
8. 儀器重量 48kg
四、使用條件(WBZJ-6六杯油樣絕緣油耐壓強度測試儀設計精巧,結構簡單)
1. 環境溫度 0~40℃
2. 相對濕度 ≤85%
3. 工作電源 AC 220V ± 10%
4. 電源頻率 50 ± 5 Hz
5. 功率消耗 <200 W
五、機箱及面板部件說明(WBZJ-6六杯油樣絕緣油耐壓強度測試儀設計精巧,結構簡單)
1.液晶顯示屏;
2.功能鍵;
3.打印機;
4.升壓速率切換開關;
5.指示燈;
6.油杯倉蓋;
7.溫、濕度傳感器;
8.地線柱;
9.電源插口;
10.電源開關;
11.高壓標志
1. 液晶屏 顯示日期、時間、操作參數、測試結果、操作菜單提示等相關信息;
2. 功能鍵 選擇設置操作參數;
3. 打印機 打印單次及多次測試結果的平均值;
4. 切換開關 選擇不同升壓速率;
5. 指示燈 燈亮時表示相關操作步驟正在進行中;
6. 油杯倉蓋 打開后放入或取出油杯,關閉后方可進行測試;
7. 溫濕傳感器 測量攝氏溫度和相對濕度,并轉換為數字信號加以顯示;
8. 地線柱 可靠的地線連接柱;
9. 電源插座 良好插接AC 220V 50Hz電源線;
10. 電源開關 控制儀器電源通斷;
11. 高壓標志 提示高壓危險的三角標志。
六、操作步驟圖解
1. 插接電源線,打開電源開關,液晶屏顯示開機頁面(圖1)
2. 在圖1頁面下,按 設置 鍵進入下1級頁面(圖2);
3. 在圖2頁面下,按 選擇 鍵移動光標√ 至 GB1986處,按 確認 鍵即可進入國標1986設置子頁面(圖3)。
在圖3頁面下,按選擇鍵移動光標至停升電壓,按 + 或 - 鍵設置停升電壓 ,其默認值是80 kV,可選范圍10 kV~80 kV(增量Δ=10 kV)。選擇好停升電壓后,按選擇鍵移動光標至杯位選擇,按確認鍵進入杯位選擇子頁面(圖4)。
在圖4頁面下,按選擇鍵移動光標至不同杯位,按×或√鍵定義工作杯號,默認值是全選(即各杯位均為√)。然后按確認鍵,確認所選停升電壓和杯號后返回開機頁面,按 開始 鍵進行測試。
如果沒有可靠接地,儀器會顯示 請接地!并發出報警聲,這時應該關掉電源,接好地線后再重新進行操作。如果沒有或者沒有條件安裝地線,可按任意鍵跳過,不會影響測試結果。
4. 在圖2頁面下,按 選擇 鍵移動光標√ 至GB2002處,按 確認 鍵即可進入國標2002設置子頁面。在該頁面下的操作與GB1986子頁面基本相同,可參考六、操作步驟圖解3.的相關內容。
5. 在圖2頁面下,按 選擇 鍵移動光標√ 至時間設置處,按 確認 鍵即可進入時間設置子頁面(圖5)。
按 選擇 鍵移動光標—至年、月、日、時、分處,按 + 或 - 鍵選擇具體數值后,按確認鍵確認,并返回開機頁面;
6. 在圖2頁面下,按 選擇 鍵移動光標√ 至自定義設置 處,按 確認 鍵即可進入 自定義設置 子頁面(圖6);
在圖6頁面下,按 選擇 鍵移動光標到相應的選項,再按 + 或 - 鍵可進行相關參數的設置。其中:
靜置時間 默認值15 min,范圍1~15 min(增量Δ= 1 min);
間隔時間 默認值5 min,范圍1~10 min(增量Δ= 1 min);
攪拌時間 默認值10 s, 范圍5~90 s(增量Δ= 5 s);
停升電壓 默認值80 kV,范圍10~80 kV(增量Δ= 10 kV)。當儀器升壓到 停升電壓 以后將停止升壓,并進入到保持狀態。若持續50 s無擊穿,儀器將默認當前停升電壓為絕緣油擊穿電壓;
打壓次數 默認值為6次,可選范圍1~6次(增量Δ=1次);設置好后按 確認 鍵返回開始頁面,按 開始 鍵進行測試;
杯位選擇 按此鍵進入杯位選擇子頁面,具體操作見六、操作步驟圖解3.的相關內容。
7. 對于該機型,每杯*多6次的平行測定擊穿電壓值等參數將自動存儲。測量完畢后屏幕將顯示測試完畢給予提醒,按 確認 鍵返回到開機頁面(圖1)。按 打印 或 顯示 鍵,進入油樣單次測量擊穿電壓值、算數平均值及測量日期和時間的顯示子頁面(圖7~9)。
注意:在顯示子頁面,按選擇鍵可以順序顯示六個界面。其中前三個界面沒有測量時間的數據顯示,為臨時數據組,關機后將丟失。而后三個界面有測量時間數據顯示,為存儲數據組,關機后不會丟失。如果樣品油杯測定超過三個,則系統將按時間分組,記錄顯示*近的三組數據。
在顯示子頁面,按打印鍵打印所選頁面的存儲數據,按確認鍵返回主頁面 。
七、注意事項
1. 使用本儀器前,一定要詳細閱讀本操作手冊;
2. 儀器操作者應通曉電氣設備或分析儀器的一般使用常識;
3. 本儀器在戶內外均可使用,但應避開雨淋、腐蝕性氣體、高濃度塵埃、高溫或陽光直射等場所;
4. 油杯應該保持潔凈。在停用期間,應加入足夠量干燥合格的絕緣油浸泡,保持油杯不受潮及電極氧化;
5. 電極連續使用一個月后,應例行檢查和維護。檢驗并調整電極間隙,使其恢復標準值;放大鏡觀察電極表面是否出現暗斑,若有此現象,應用綢布擦拭電極表面,使其恢復原狀;
6. 儀器的維修和調試須由專業人員完成;
7. 接通電源前,應仔細檢查連接線是否牢固,儀器外殼必須可靠接地!
8. 接通電源后,操作人員嚴禁觸及油杯箱蓋外殼,以免發生電擊危險!
9. 儀器在使用過程中,如發現異常應立即切斷電源!
推動傳統能源與可再生能源深度融合是能源轉型的理想情景,將帶來兩方面好處:發揮傳統能源靈活性和儲能價值;避免煤電資產擱淺造成資源浪費,降低能源轉型帶來的風險和成本。
保證能源和電力可靠穩定供應。轉型目的是推動能源產業高質量發展,前提是保證能源和電力可靠穩定供應,不能因為當前煤炭是主要碳排放來源,就傾向于拋棄煤炭,而是應該用系統的眼光看待煤炭在能源轉型中的支撐作用,充分認識到實現煤炭消費比例降低是個循序漸進的過程。從當前以煤電為主的能源系統到未來構建以新能源為主體的新型電力系統的過程中,煤電將發揮“穩定器”和“緩沖器”作用。
能源轉型意味著能源電力結構將發生顯著變化。從電源側來看,高比例風電、太陽能發電等可再生能源給新型電力系統可靠穩定運行帶來巨大挑戰。同時,新型電力系統呈現大裝機容量、大峰谷差及機組可用率顯著降低等特征,使得其對靈活性電源、調峰能力等提出了更高要求。從電力終端消費來看,能源轉型后電氣化水平將大幅提升,即使相同的全社會能源消費量條件下,全社會用電量將顯著增加,倒逼電源側提供更多電量,電力系統的發電裝機規模和發電量都將顯著增加。因此,發揮好煤電在新型電力系統中保障電力運行保障的作用至關重要。
生物質能與煤炭混合發電有助于降低存量煤電碳排放。未來碳達峰后的碳排放要求將越來越嚴格,生物質能是寶貴的負排放能源,可以中和必須保留的煤電機組所排放的二氧化碳。生物質能與煤炭混合燃燒或單獨燃燒均可提高電源的靈活性,滿足碳排放降低要求。
煤電與碳捕捉技術結合可提供零碳靈活性電源。對電力系統而言,為提供充足的調峰能力,煤電將長期存在,即使實現碳中和,仍將保留一定容量的煤電機組。由于煤電機組排煙大、煙氣中的二氧化碳分壓低、煙氣成分復雜等原因,碳捕集難度大、成本高。因此,為確保到2060年煤電機組能提供低碳甚至零碳電力,需提前開展碳捕捉技術研發、示范和商業推廣。
揚州萬寶轉載其他網站內容,出于傳遞更多信息而非盈利之目的,同時并不代表贊成其觀點或證實其描述,內容僅供參考。版權歸原作者所有,若有侵權,請聯系我們刪除。